Login | Users Online: 203  
Home Print this page Email this page Small font sizeDefault font sizeIncrease font size   
Home | About us | Editorial board | Search | Ahead of print | Current Issue | Archives | Submit article | Instructions | Subscribe | Advertise | Contact us
 


 
Table of Contents
ORIGINAL ARTICLE
Year : 2013  |  Volume : 14  |  Issue : 4  |  Page : 165-170  

Functional assessment of the dynamic profile of tricuspid annular motion


Department of Medicine, Division of Cardiovascular Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA

Date of Web Publication12-Feb-2014

Correspondence Address:
Angel López-Candales
Division of Cardiovascular Diseases, 231 Albert Sabin Way - Room 3461 MSB, Academic Health Center, PO Box 670542, Cincinnati, OH, 45267-0542
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-705X.126881

Rights and Permissions
   Abstract 

Background: Maximal systolic tricuspid annulus (TA) descent by M-mode (MM) is a well described and accepted standard reference of right ventricular (RV) systolic function; however, the contribution of each individual TA contour during the cardiac cycle has not been well characterized. Therefore, the aim of this study was to define each peak and nadir component of the constantly moving annulus.
Material and Methods: Standard echocardiographic data was collected from 35 patients over a wide range of both normal and abnormal RV systolic function. Time to onset and total duration of each recognizable component of the TA tissue Doppler imaging (TDI) signal was measured and correlated to each individual change in contour of the TA, obtained by MM, during the cardiac cycle.
Results: In this heterogeneous patient population, careful measurement of each recognizable component of the TA TDI signal corresponded to conformational changes in the TA contour. Furthermore, these TA TDI intervals were imprinted into the TA MM tracing and precisely identified specific systolic as well as diastolic events, regardless of RV systolic function or pulmonary hypertension severity.
Conclusions: Careful observation of the constant dynamic motion of the TA, aided by high temporal resolution MM, allows better understanding of each individual component of annular motion. It appears that each peak and nadir component not only is useful in characterizing RV systole and diastole, but also would be invaluable to assess the functional relationship that exists between the right atria and ventricle; particularly, when annular motion directly reflects the contribution of both cardiac chambers.

Keywords: Echocardiography, M-mode echocardiography, pulmonary hypertension, right ventricular function, tissue Doppler imaging, tricuspid annular plane systolic excursion


How to cite this article:
López-Candales A. Functional assessment of the dynamic profile of tricuspid annular motion. Heart Views 2013;14:165-70

How to cite this URL:
López-Candales A. Functional assessment of the dynamic profile of tricuspid annular motion. Heart Views [serial online] 2013 [cited 2018 May 23];14:165-70. Available from: http://www.heartviews.org/text.asp?2013/14/4/165/126881


   Introduction Top


Knowledge of the role of the right ventricle (RV) in health and disease historically has lagged behind the obviously important left ventricle with the RV traditionally being considered a mere bystander. However, numerous clinical reports have now identified RV dysfunction with adverse clinical outcomes prompting better recognition of RV dysfunction. [1],[2],[3],[4],[5],[6],[7],[8],[9]

The use of objective measures such as M-mode (MM) and tissue Doppler imaging (TDI) interrogation of the tricuspid annulus (TA) has been proven both simple and reproducible to improve our echocardiographic interpretation of RV systolic function. [10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20] However, in contrast to TDI, which provides information in terms of RV systole and diastole; [17],[18],[19] MM interpretation of TA motion has simply been used to describe the maximal longitudinal descent as a marker of RV systolic function. [10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20]

Since the TA is in constant motion throughout the cardiac cycle, it is important to characterize the specific contribution of RV function to each peak and nadir component of the annulus noted in MM tracings. The dynamic motion of the TA embedded in an MM image will provide additional physiologic information when interpreting an echocardiogram with regards to overall RV performance.

Even though a correlation between motion assessed by MM and velocity measurements by TDI might appear simplistic findings, mostly deducible from fundamental cardiac physiology, this type of side-by-side analysis has never been investigated and might prove useful in defining the specific contribution of TA motion seen by MM, in both systole and diastole.

To that extent, we designed a pilot study in which both MM and TDI interrogations of the TA were used in the same individual to accurately delineate the individual contribution of each component of TA motion throughout the cardiac cycle. We then carefully measured time intervals that characterize the occurrence of systole and diastole, as seen in the corresponding TA TDI signal, and found the specific imprint correlate in the corresponding TA MM image. Since our group has extensively studied the effects of chronic pulmonary hypertension (cPH) on RV performance; [17],[18],[19],[20],[21],[22],[23] we then investigated how each individual TA motion component was altered in cPH patients.


   Material and Methods Top


We queried our echocardiographic database and identified 35 consecutive patients who had adequate acoustic windows with visualization of the RV, including well visualized TA with clear MM images and TDI signals for proper analysis. All patients were in normal sinus rhythm at the time of the study, had no premature atrial or ventricular beats, or paced rhythm. In addition, all patients had normal left ventricular systolic function, with no left ventricular wall motion abnormalities and no history of previous cardiac surgery.

The protocol was reviewed and approved by the Institutional Review Board of the University of Pittsburgh Medical Center.

Standard measurements of RV end-systolic and end-diastolic areas to calculate RV fractional area change [21],[22],[23] as well as left ventricular volumes and ejection fraction were measured from the apical four- and two-chamber views using biplane Simpson's rule according to American Society of Echocardiography standards. [12]

Tricuspid annular TDI patterns were obtained by placing a 5 mm sample volume positioned at the lateral corner between the TA and the RV lateral wall using the apical four chamber view, as described for MM, [17],[18],[21],[22] utilizing tissue velocity imaging at a frame rate of 60-100 frames per second. [19],[20] A typical TDI signal consists of an initial positive signal representing isovolumic contraction that is then followed by another positive signal corresponding to TA systolic velocity. The diastolic component of the TA signal is composed of three negative deflections, the first one represents isovolumic relaxation, followed by early phase of diastolic myocardial velocity (Ea) and the last negative deflection is representative of the late phase of diastolic myocardial velocity (Aa) after atrial contraction. All velocities were recorded for at least three consecutive cardiac cycles during end-expiration. Once all TA systolic and diastolic signals were identified [Figure 1]a, we then measured time to onset of these signals as depicted in [Figure 1]b.
Figure 1: (a) Representative tissue Doppler image of the tricuspid annulus showing proper identification of all signals including isovolumic contraction (IVC) and systolic signals as well as the isovolumic relaxation (IVR), early and late diastolic signals. (b) Same tissue Doppler image showing how each individual time interval was measured from the onset of the QRS denoted by the solid vertical white line. White arrows head shows the time to onset to the isovolumic contraction signal; thin solid white arrow represents time to onset of the systolic signal, while the thick solid white arrow measures the time to termination of the tricuspid annular systolic signal. The thin dotted arrow denotes time to onset of diastole while the thick dashed white arrow defines time to termination of diastole

Click here to view


To determine the specific motion and timing of all components of the TA, in the apical four-chamber view, we oriented the MM cursor to the junction of the tricuspid valve plane with the RV free wall aligning the motion of the annulus along the MM cursor. From this view, overall TA excursion is recorded from the lowest point seen after atrial ascent until maximal descent is recorded during ventricular systole.

A week after the initial TA TDI time intervals were obtained, tricuspid annular plane systolic excursion (TAPSE) MM measurements were performed to determine if the individual peak and nadir components in the TAPSE MM would match the previously recorded TA TDI measurements. These TAPSE measurements were performed without knowledge of the previously recorded TA TDI readings and the patient's identity was decoded to avoid bias in the measurements.

Finally, continuous-wave Doppler was utilized to record the tricuspid regurgitation jet from multiple windows, and the pulmonary artery systolic pressure was derived using the modified Bernoulli equation and an estimate of mean right atrial pressure using the diameter and collapse index of the inferior vena cava and the hepatic venous flow pattern. [24],[25]

All echocardiographic parameters were calculated off-line using the commercially available tool section of the Acuson Syngo system (WS 3000 Diagnostic Workstation, Siemens, California.). Two cardiac sonographers collected all echocardiographic images and the same echocardiographer analyzed all the data. Measurements of each variable were collected from three consecutive beats and the mean of each variable with its standard deviation was used for comparison analysis using the 2-tailed Student's t-test for paired and unpaired data, respectively. A P value <0.05 was considered statistically significant for all analyses.


   Results Top


Characterization of each individual peak and nadir motion component of the TA during systole and diastole was studied in all 35 patients and the echocardiographic variables of the study group are shown in [Table 1].
Table 1: Standard echocardiographic and Doppler measurements

Click here to view


Timing of each TA systolic and diastolic flow component using TDI is shown in [Table 2].
Table 2: Tricuspid annular tissue Doppler imaging time intervals

Click here to view


As described in the Methods Section, each specific systolic and diastolic event denoted by the TA TDI signal was superimposed on the corresponding TAPSE MM tracing of the same patient and each peak and nadir TAPSE component on the MM tracing was identified as seen in [Figure 2]a and b. Finally, each MM TAPSE intervals were carefully measured and listed on [Table 3].
Table 3: Tricuspid annular M-mode time intervals

Click here to view
Figure 2: (a) Representative M-mode (MM) tracing of the TA showing time to onset of systolic events, intervals were taken from measurements obtained from the TA tissue Doppler imaging signal.(b) Representative MM tracing of the TA showing time to termination of diastolic events; intervals were taken from measurements obtained from the TA tissue Doppler imaging signal

Click here to view


Representative TA TDI images with its corresponding TAPSE MM tracing and the respective time intervals they represent are shown [Figure 3]a and b.
Figure 3: (a) Representative tricuspid annular tissue Doppler image with its corresponding MM tracing and the respective time intervals they represent from a patient from Group I. (b) Representative tricuspid annular tissue Doppler image with its corresponding MM tracing and the respective time intervals they represent from a patient from Group II

Click here to view



   Discussion Top


The results of this study describe for the first time the characteristic dynamic profile of a TAPSE MM tracing. Specifically, it describes each peak and nadir component in relation to RV systolic and diastolic events as the TA moves throughout the cardiac cycle.

From a mechanistic point of view, it is well known that RV wall motion is complex. [26],[27] First, during systole, there is longitudinal shortening of the RV inflow along the base to the apex axis with radial motion of the RV free wall towards the common septum. Second, there is circumferential motion that gives a rotation or a squeeze of the ventricle. [28] Therefore, MM with its well-known temporal resolution, [29],[30] allows accurate interrogation of the full TA excursion along its longitudinal axis throughout the cardiac cycle. It is important to point out that in addition to knowledge of maximal TA plane systolic excursion, known to correlate with RV fractional area change; [10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],[22],[23] a more detailed notion of the full extent of TA motion is needed to understand RV performance and atrio-ventricular interactions.

We acknowledge some limitations. First is the small number of patients included in our study. However, this was a proof of concept approach that allowed proper identification of the systolic and diastolic components of TA annular motion. Second, it is important to point out that TA TDI and MM images were not obtained simultaneously and respiration, loading conditions and heart rate can be variable and might change the occurrence of events. However, all signals were obtained at the end of expiration and there was no significant difference in heart rate between the TDI and MM counterparts. Finally, no assumptions can be made on how abnormal left ventricular systolic function or the presence of any arrhythmia would affect the interpretation of these signals and their intervals.

In summary, it should not be surprising to identify that the value of TA MM assessment goes well beyond its already well recognized utility in assessing maximal systolic excursion. [10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20] Even though the 3-D TA motion was not studied; the results of this analysis demonstrated an accurate imprint, although imperfect as, of systolic as well as diastolic events on TA MM tracings. Careful identification of these events can be made as seen in [Figure 4]. Even though it can be argued that these findings would be expected and likely deducible from the fundamentals of cardiac physiology; this side-by-side analysis was simply intended to enhance the potential role of TA MM beyond its current role in assessing longitudinal RV function. These results seem to imply that evaluation of a still-frame TA MM tracing not only is useful in identifying RV systole; however, also diastole. Further studies are now needed to use TAPSE MM tracings to prospectively study atrio-ventricular relationships as well as ventricular interdependence and dyssynchrony.
Figure 4: Representative tricuspid annular MM tracing encompassing a detailed description of all peaks and nadirs. Traditional maximal longitudinal systolic excursion or tricuspid annular plane systolic excursion is seen by the dotted vertical line at the onset of the electrical QRS and denoted by the dotted arrow. Isovolumic contraction signal is demarcated by the two solid white vertical lines. Ventricular systole occurs from the second white vertical solid line and the broken line with dots line, while diastole is encompassed by the same broken line with dots and the last hashed line. Late diastole is denoted by dashed and two dots line and the hashed line. Atrial contraction occurs within the latter after onset of the electrical P wave on the electrogram and is seen by the solid white arrow

Click here to view



   Acknowledgment Top


There was no funding source for this study. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

There are no conditions that may represent a potential conflict of interest for the corresponding author.

 
   References Top

1.Sheehan F, Redington A. The right ventricle: Anatomy, physiology and clinical imaging. Heart 2008;94:1510-5.  Back to cited text no. 1
[PUBMED]    
2.Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 2008;117:1436-48.  Back to cited text no. 2
[PUBMED]    
3.Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008;117:1717-31.  Back to cited text no. 3
[PUBMED]    
4.Giusca S, Jurcut R, Ginghina C, Voigt JU. The right ventricle: Anatomy, physiology and functional assessment. Acta Cardiol 2010;65:67-77.  Back to cited text no. 4
[PUBMED]    
5.Lindqvist P, Calcutteea A, Henein M. Echocardiography in the assessment of right heart function. Eur J Echocardiogr 2008;9:225-34.  Back to cited text no. 5
[PUBMED]    
6.Warnes CA. Adult congenital heart disease importance of the right ventricle. J Am Coll Cardiol 2009;54:1903-10.  Back to cited text no. 6
[PUBMED]    
7.Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol 2009;54:S55-66.  Back to cited text no. 7
    
8.Meluzín J, Spinarová L, Dusek L, Toman J, Hude P, Krejcí J. Prognostic importance of the right ventricular function assessed by Doppler tissue imaging. Eur J Echocardiogr 2003;4:262-71.  Back to cited text no. 8
    
9.Mahmud M, Champion HC. Right ventricular failure complicating heart failure: Pathophysiology, significance, and management strategies. Curr Cardiol Rep 2007;9:200-8.  Back to cited text no. 9
[PUBMED]    
10.Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J 1984;107:526-31.  Back to cited text no. 10
[PUBMED]    
11.Ghio S, Recusani F, Klersy C, Sebastiani R, Laudisa ML, Campana C, et al. Prognostic usefulness of the tricuspid annular plane systolic excursion in patients with congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 2000;85:837-42.  Back to cited text no. 11
[PUBMED]    
12.Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63.  Back to cited text no. 12
[PUBMED]    
13.Kjaergaard J, Akkan D, Iversen KK, Køber L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail 2007;9:610-6.  Back to cited text no. 13
    
14.Kjaergaard J, Petersen CL, Kjaer A, Schaadt BK, Oh JK, Hassager C. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. Eur J Echocardiogr 2006;7:430-8.  Back to cited text no. 14
[PUBMED]    
15.Ueti OM, Camargo EE, Ueti Ade A, de Lima-Filho EC, Nogueira EA. Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: Comparison with radionuclide angiography. Heart 2002;88:244-8.  Back to cited text no. 15
[PUBMED]    
16.Miller D, Farah MG, Liner A, Fox K, Schluchter M, Hoit BD. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance. J Am Soc Echocardiogr 2004;17:443-7.  Back to cited text no. 16
[PUBMED]    
17.López-Candales A, Rajagopalan N, Gulyasy B, Edelman K, Bazaz R. Comparative echocardiographic analysis of mitral and tricuspid annular motion: Differences explained with proposed anatomic-structural correlates. Echocardiography 2007;24:353-9.  Back to cited text no. 17
    
18.Bazaz R, Edelman K, Gulyasy B, López-Candales A. Evidence of robust coupling of atrioventricular mechanical function of the right side of the heart: Insights from M-mode analysis of annular motion. Echocardiography 2008;25:557-61.  Back to cited text no. 18
    
19.Saxena N, Rajagopalan N, Edelman K, López-Candales A. Tricuspid annular systolic velocity: A useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography 2006;23:750-5.  Back to cited text no. 19
    
20.Rajagopalan N, Saxena N, Simon MA, Edelman K, Mathier MA, López-Candales A. Correlation of tricuspid annular velocities with invasive hemodynamics in pulmonary hypertension. Congest Heart Fail 2007;13:200-4.  Back to cited text no. 20
    
21.López-Candales A, Rajagopalan N, Dohi K, Edelman K, Gulyasy B. Normal range of mechanical variables in pulmonary hypertension: A tissue Doppler imaging study. Echocardiography 2008;25:864-72.  Back to cited text no. 21
    
22.López-Candales A, Dohi K, Rajagopalan N, Edelman K, Gulyasy B, Bazaz R. Defining normal variables of right ventricular size and function in pulmonary hypertension: An echocardiographic study. Postgrad Med J 2008;84:40-5.  Back to cited text no. 22
    
23.López-Candales A, Dohi K, Bazaz R, Edelman K. Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. Am J Cardiol 2005;96:602-6.  Back to cited text no. 23
    
24.Schiller NB. Pulmonary artery pressure estimation by doppler and two-dimensional echocardiography. Cardiol Clin 1990;8:277-87.  Back to cited text no. 24
[PUBMED]    
25.Yock PG, Popp RL. Noninvasive estimation of right ventricular systolic pressure by doppler ultrasound in patients with tricuspid regurgitation. Circulation 1984;70:657-62.  Back to cited text no. 25
[PUBMED]    
26.Rushmer RF, Thal N. The mechanics of ventricular contraction; a cinefluorographic study. Circulation 1951;4:219-28.  Back to cited text no. 26
[PUBMED]    
27.Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M. The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg 2001;13:301-19.  Back to cited text no. 27
    
28.Buckberg GD, Coghlan HC, Hoffman JI, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. VII. Critical importance of septum for right ventricular function. Semin Thorac Cardiovasc Surg 2001;13:402-16.  Back to cited text no. 28
    
29.Kisslo J, vonRamm OT, Thurstone FL. Cardiac imaging using a phased array ultrasound system. II. Clinical technique and application. Circulation 1976;53:262-7.  Back to cited text no. 29
    
30.Kisslo JA, vonRamm OT, Thurstone FL. Dynamic cardiac imaging using a focused, phased-array ultrasound system. Am J Med 1977;63:61-8.  Back to cited text no. 30
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Material and Methods
   Results
   Discussion
   Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed722    
    Printed6    
    Emailed1    
    PDF Downloaded69    
    Comments [Add]    

Recommend this journal