Login | Users Online: 766  
Home Print this page Email this page Small font sizeDefault font sizeIncrease font size   
Home | About us | Editorial board | Search | Ahead of print | Current Issue | Archives | Submit article | Instructions | Subscribe | Advertise | Contact us

Table of Contents
Year : 2019  |  Volume : 20  |  Issue : 3  |  Page : 101-108  

Coronary artery aneurysm: Evaluation, prognosis, and proposed treatment strategies

1 Department of Cardiology, University Hospital of Wales, Cardiff, UK
2 Department of Cardiology, Morriston Hospital, Swansea, UK

Date of Web Publication26-Sep-2019

Correspondence Address:
Dr. Azeem S Sheikh
Interventional Fellow, Department of Cardiology, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW
Login to access the Email id

Source of Support: None, Conflict of Interest: None


Rights and Permissions

Coronary artery aneurysm is a rare disorder, which occurs in 0.3%–4.9% of patients undergoing coronary angiography. Atherosclerosis accounts for >90% of coronary artery aneurysms in adults, whereas Kawasaki disease is responsible for most cases in children. Recently, with the advent of implantation of drug-eluting stents, there are increasing reports suggesting stents causing coronary aneurysms, months or years after the procedure. The pathophysiology of coronary artery aneurysm is not completely understood but is thought to be similar to that for aneurysms of larger vessels, with the destruction of arterial media, thinning of the arterial wall, increased wall stress, and progressive dilatation of the coronary artery segment.
Coronary angiography remains the gold standard tool, providing information about the size, shape, and location and is also useful for planning the strategy of surgical resection. The natural history and prognosis remain unclear.
Despite the important anatomical abnormality of the coronary artery, the treatment options of coronary artery aneuryms are still poorly defined and present a therapeutic challenge.
We describe four cases, which were managed differently followed by a review of the current literature and propose some treatment strategies.

Keywords: Atherosclerosis, coronary angiography, coronary artery disease, drug-eluting stent, Kawasaki disease, percutaneous coronary intervention

How to cite this article:
Sheikh AS, Hailan A, Kinnaird T, Choudhury A, Smith D. Coronary artery aneurysm: Evaluation, prognosis, and proposed treatment strategies. Heart Views 2019;20:101-8

How to cite this URL:
Sheikh AS, Hailan A, Kinnaird T, Choudhury A, Smith D. Coronary artery aneurysm: Evaluation, prognosis, and proposed treatment strategies. Heart Views [serial online] 2019 [cited 2023 Nov 30];20:101-8. Available from: https://www.heartviews.org/text.asp?2019/20/3/101/267840

   Introduction Top

Coronary artery aneurysm (CAA) is an uncommon condition and is defined as dilatation of the coronary artery exceeding 50% of the reference vessel diameter.[1] CAAs are termed giant if their diameter transcends the reference vessel diameter by greater than four times or if they are >8 mm in diameter.[2] It occurs in about 0.3%–4.9% of patients undergoing coronary angiography [1] and are reportedly present in 1.4% of postmortem examinations.[1]

CAAs are found in the epicardial coronary arteries, most frequently in the proximal and middle segments of the right coronary artery (RCA) (68%), followed by the proximal left anterior descending (LAD) (60%) and left circumflex (LCx) (50%). CAA of the left main stem (LMS) is exceedingly rare and occurs in only 0.1% of the population.[1],[3]

Dilatation may be either focal or diffuse, and aneurysms are classified as either fusiform (longitudinal dimension > transverse dimension) or saccular (transverse dimension > longitudinal dimension) in morphology. It has been noted that about one-third of CAAs are associated with obstructive coronary artery disease and have been associated with myocardial infarction, arrhythmias, or sudden cardiac death.[4]

More recently, with the increasing use of drug-eluting stents (DESs), there are growing reports signifying stents causing coronary aneurysms, months or even years after the intervention.[5] CAAs after coronary intervention are infrequent, with a reported incidence of 0.3%–6.0% and most aneurysms are in actual fact pseudoaneurysms rather than true aneurysms.[6]

We present four cases of CAA from two centers, which were managed differently followed by a review of the literature regarding etiology, pathogenesis, and the management of this rare entity.

   Case 1 Top

A 77-year-old woman with a known history of coronary artery disease, presented with unstable angina. Seven years previously, she underwent coronary angiography, which demonstrated severe, diffuse, three-vessel disease and she was turned down for surgery or percutaneous coronary intervention (PCI). She was managed medically and did well over the last few years until a recent presentation.

Repeat coronary angiography revealed severe left-sided disease, which was unamenable to PCI, although the occluded LAD artery had severe stenosis into a diagonal and a small LCx which was blocked. The RCA was excessively tortuous with aneurysmal dilatation and severely diseased [Figure 1]a. After informed consent, a decision for revascularization of the RCA with a DES was taken, and subsequently, a 3.5 mm × 30 mm and 3.0 mm × 15 mm Biofreedom stents (Biosensors International Group, Ltd.,) was deployed at 14 atmospheric pressure with good thrombolysis in myocardial infarction-III flow [Figure 1]b.
Figure 1: Coronary angiography: (a) Left anterior oblique view of the right coronary artery demonstrating a tortuous artery with aneurysmal dilatation and severe disease. (b) Right anterior oblique cranial view of the right coronary artery poststenting showing thrombolysis in myocardial infarction-III flow

Click here to view

The case was complicated by perforation distally induced by the guide wire which required a pericardial drain, but she made a good recovery eventually. She was discharged home on the 3rd day on dual anti-platelet therapy (DAPT) along with a statin and a beta blocker. She was followed-up 6 months later and was doing very well and had no cardiac symptoms.

   Case 2 Top

A 52-year-old male, with no significant medical history of note, presented with chest pain and ST elevation in the anterolateral leads on his electrocardiogram (ECG). An emergency coronary angiography demonstrated an acutely occluded LAD, after the origin of the first septal. He subsequently had a 3 mm × 38 mm Promus Element (Boston Scientific Corporation, Marlborough, MA, USA) DES deployed at 16 atmospheric pressure and a 4 mm × 9 mm Azule (Boston Scientific Corporation, Marlborough, MA, USA). A bare metal stent was deployed more proximally with a degree of overlap. The overlap and most part of the first stent was postdilated with a 4-mm noncompliant balloon to moderate pressures. There was an unexpected over-expansion in the distal aspect of the DES.

Optimal coherence tomography (OCT) showed a well-apposed stent. There was an ulcerated plaque [[Figure 2]a, arrow], in the distal aspect of the DES, which resulted in a focal over-expansion of this segment of the stent, because of the lack of resistance in the arterial wall in that segment.
Figure 2: Coronary angiography: (a) Left anterior oblique cranial view of the left anterior descending artery showing an ulcerated plaque (arrow), beneath the distal portion of the previously placed drug-eluting stent. (b) Posteroanterior caudal view of the left anterior descending artery demonstrating a focal aneurysm in the mid vessel at the site of previous drug-eluting stent insertion. (c) Right anterior oblique caudal view of the left anterior descending artery demonstrating that the aneurysm has nearly sealed-off

Click here to view

The patient was discharged home with aspirin for life and prasugrel for 1 year. A planned surveillance angiogram 9 months later revealed a focal aneurysm formation in the middle of the DES that was deployed in the mid LAD [Figure 2]b. We decided to manage him conservatively with DAPT long term.

A repeat surveillance angiogram 1 year later demonstrated that the aneurysm was much smaller in size and nearly sealed off [Figure 2]c. OCT confirmed the same findings.

   Case 3 Top

A 55-year-old Caucasian male presented with a history of exertional chest pain for few months. The exercise tolerance test demonstrated pathological ST depression in anterior leads, associated with chest pain at 5 min into the standard Bruce protocol.

The patient was obese and diabetic and had a significant family history of premature coronary artery disease. His coronary angiography revealed severe stenoses in the proximal LAD and first diagonal. The LCx had severe disease in the mid vessel with poststenotic aneurysmal dilatation [Figure 3]. The RCA was dominant and occluded in the mid vessel. A mini-multi-disciplinary team (MDT) discussion was held with regard to the revascularization options for him. His Syntax II score was 27, suggesting 4-year mortality of 4.6% with PCI compared to 2.6% with coronary artery bypass grafting (CABG). He was, therefore, referred for CABG.
Figure 3: Coronary angiography: Right anterior oblique caudal view of the left circumflex artery showing severe disease in the mid vessel with poststenotic aneurysmal dilatation

Click here to view

   Case 4 Top

A 67-year-old Caucasian male presented with chest pain and hypotension. He had a history of prior CABG (saphenous vein grafts to LAD, right and intermediate coronary arteries) as well as thoracic and abdominal aneurysm repair. There were no significant dynamic ECG changes and troponin T was elevated. A chest radiograph demonstrated a widened mediastinum. A transthoracic echocardiogram revealed a heterogeneous mediastinal mass and computed tomography confirmed this to be a mediastinal hematoma with active contrast leak from a proximal LAD aneurysm [Figure 4]a.
Figure 4: Computed tomography: (a) Computed tomogram showing a mediastinal mass with contrast extravasation (arrow) from the proximal left anterior descending aneurysm. (b) Right anterior oblique caudal view showing aneurysm in the proximal left anterior descending artery with extravasation of the contrast. (c) Right anterior oblique view showing closure of the aneurysm following coils insertion

Click here to view

Following a multi-disciplinary discussion, it was decided to perform percutaneous closure of the fistula between the proximal LAD aneurysm and the mediastinum. Coronary angiography revealed a patent saphenous vein graft to the LAD and a giant proximal LAD aneurysm with evidence of dissection and extravasation of contrast [Figure 4]b.

The LMS was cannulated with a 4.0 Extra Back Up Launcher guide catheter (Medtronic, USA). In order to achieve hemodynamic stability, the LAD was temporarily occluded by inflation of a 3.0 mm × 12 mm Trek balloon (Abbott Vascular, USA) inserted on a balanced middle weight coronary guidewire (Abbott Vascular, USA) into the proximal LAD. The LAD was then thrombosed by deployment of 3 0.018” Tornado Embolization coils (Cook Medical, USA) proximal to the aneurysm neck through a MicroFerret microcatheter (Cook Medical, USA) achieving vessel closure [Figure 4]c. The patient made an excellent recovery and was discharged.

He was asymptomatic when reviewed at 6 months, and a gated cardiac computed tomography (CT) demonstrated the mediastinal mass had reduced in size and there was no longer active contrast extravasation.

   Discussion Top

There have been attempts, but with limited success, by the researchers and physicians, in defining abnormal dilatation of the coronary arteries, the dilemma being differentiating between aneurysm and ectasias. At present, CAA is defined as a localized, irreversible dilatation of the blood vessel lumen that exceeds the diameter of the adjacent normal segment by >1.5-fold.[1] On the contrary, ectasia is used to describe a diffuse dilatation of coronary arteries that involves ≥50% of the length of the artery; this classification is based on the appearance and number of vessels involved.[7]

The classification of coronary artery dilatation, as described by Díaz-Zamudio et al.,[8] is shown in [Table 1].
Table 1: Classification of coronary artery dilatation

Click here to view

Atherosclerosis is accountable for >90% of CAAs in adults, whereas Kawasaki disease is responsible for the majority of cases in children.[8] In recent years, CAA have been described as a sequel of coronary angioplasty. This was first stated by Holmes et al.[9] following a balloon angioplasty. CAA have also been described after placement of DESs.[10]

[Table 2] lists the different etiologies which have been postulated for CAAs.
Table 2: Causes of coronary artery aneurysm

Click here to view


The pathophysiology of CAA still remains unclear but is perceived to be identical to that for aneurysms of larger vessels, with the destruction of arterial media, thinning of the arterial wall, increased wall stress, and progressive dilatation of the coronary artery segment.[11]

The majority of CAAs, about 50%–52%, are considered to be arteriosclerotic in origin. In their study, Berkoff and Rowe [12] hypothesized the presence of a thin, degenerated media, adjacent to an intimal plaque as the major pathological prerequisite leading to plaque rupture and erosion of grumous material by the bloodstream. This excavated plaque then leads to aneurysm formation.

Matrix metalloproteinases (MMPs) have been shown to be involved in the pathogenesis of CAA formation by causing increased proteolysis of extracellular matrix proteins.[13] MMPs (1, 2, 3, 9, and 12) are known to be capable of degrading essentially all components of the arterial wall matrix (elastin, collagen, proteoglycans, laminin, and fibronectin) and are present at elevated concentrations in aneurysms, while decreased levels of tissue inhibitors of MMPs are present. The MMP-3 5A allele is linked with higher promoter activity for transcription of the gene, and this allele is more frequently seen in patients with CAA and atherosclerosis compared to patients with only coronary atherosclerosis.[14]

Connective tissue disorders such as Marfan's syndrome can cause aneurysms without atherosclerosis. Marfan's syndrome is linked to mutations in the gene for fibrillin, and fibrillin is homologous with the family of latent transforming growth factor (TGF)-β binding proteins, which hold TGF-β in an inactive complex.[15],[16]

CAA may complicate about 4% of coronary interventions.[17] The suggested pathogenesis of stent-related aneurysm formation is multifactorial. DES consists of immunosuppressants such as Sirolimus, which inhibits inflammation, or chemotherapeutic agents like paclitaxel, which is an anti-inflammatory agent as well as an inhibitor of cell proliferation. It has been proposed that, once the drug is eluted, the polymer in which the drug is embedded may evoke a hypersensitivity reaction and vasculitis which leads to weakening of the vessel wall and subsequent dilatation.[5]

[Table 3] describes a classification system for coronary aneurysm that forms after coronary intervention, as proposed by Aoki et al.[10]
Table 3: Classification of percutaneous intervention-associated coronary artery aneurysm

Click here to view

Clinical features

No clinical features are distinctive of CAAs. Chest pain, suggestive of stable angina, is the most frequent presentation in patients with coronary aneurysm.[18] Patients may present with ST-elevation myocardial infarction,[19] non-ST elevation myocardial infarction,[20] sudden cardiac death or complications such as thrombus formation, embolization, fistula formation, rupture, hemopericardium, tamponade, compression of surrounding structures, or congestive cardiac failure.[5],[21],[22]

Clinical presentation of the giant coronary aneurysm may mimic aneurysms of ascending aorta or the pulmonary trunk, or other conditions such as cardiac tumors, pericardial tumors or thymomas.[5] Giant coronary aneurysms are linked to advanced age, the tendency for complications, including rupture and may present as mediastinal, intra-cardiac mass or superior vena cava syndrome in addition to symptoms suggestive of ischemia.[21]


CAA can be diagnosed by noninvasive and invasive techniques, such as echocardiography, CT, magnetic resonance imaging (MRI), and coronary angiography.

Coronary angiography remains the gold standard tool as it provides information about the shape, size, location, and co-existing anomalies such as coronary artery disease, and is also useful for setting up the strategy of surgical resection.[23] However, it is invasive with associated risks, expensive, and the true size of the coronary aneurysms may be underestimated if they contain a substantial amount of thrombus.[24]

Among noninvasive modalities, coronary CT is an alternative to invasive coronary angiography that can be suggested as a technique of choice for the follow-up of patients with CAAs because of improvements in terms of radiation dose with the current protocols.[25] However, this modality may have limitations in demonstrating clots or thrombus inside the vessel, in delineating the distal part of the coronary arteries, and in simulating a large coronary aneurysm as an inhomogenous mass because of the blood turbulence within it.[26]

Coronary magnetic resonance angiography (MRA) is an another noninvasive technique for the diagnosis and assessment of CAAs, avoiding the large radiation dose associated with coronary CT.[21] However, coronary MRA has its limitations; it is not available in all medical centers, has inferior spatial resolution compared to coronary CTA, and does not show the characteristic linear peripheral calcifications of the CAA, which are essential for making the correct diagnosis.[27]

Intravascular ultrasound (IVUS) has become the “gold standard” technique that produces transluminal images of the coronary arteries, including information on the composition of the lumen and the arterial wall structure.[28] IVUS is very helpful in differentiating true from false aneurysms caused by plaque rupture.[28]


All patients with angiographic evidence of coronary aneurysms should have their cardiac risk factors aggressively dealt with, whether or not they have obstructive coronary artery disease. The options for managing coronary aneurysms are still ill-defined and present a therapeutic challenge to interventional cardiologists.[29] There are no randomized trials to evaluate different management strategies and their outcomes. Most of the information, we have at present, is based on the anecdotal case reports and expert consensus.

The treatment of CAA consists of medical management, surgical resection, and stent placement; however, the appropriate treatment for CAAs depends on the precise clinical situation. The clinical decision-making process is further complicated by the fact that the complete resolution of these aneurysms has been noticed in some cases without any treatment, contrary to the possibility of rupture if the aneurysm is left untreated. In their study, Aoki et al.[10] proposed that the treatment of CAA be “individualized” using a combination of the size of the aneurysm, expansion history, pathophysiology, and symptoms to decide when and if to apply therapy alternatives.

We discussed four cases with CAA, which were managed differently - conventional stenting, conservative management, coil occlusion of the coronary artery, and CABG. All management strategies were undertaken according to individual anatomical and clinical information, with excellent outcomes achieved in all cases.

Medical management

The evidence suggests that asymptomatic small CAAs may not require any treatment, but the dilatation may get progressively worse,[30] increasing the risk of complications.

Medical therapy generally consists of attempts to prevent thrombo-embolic complications in patients with aneurysmal arteries who are at increased thrombotic risk through the administration of antiplatelets and anticoagulant medications.[31] Aspirin is the preferred choice; and a second antiplatelet agent (such as clopidogrel, prasugrel, or ticagrelor) considered unless there is clinical contraindication.[32]

Lima et al. reported two cases of left main CAA that were managed conservatively with warfarin and aspirin who remained well at 6 months follow-up.[33] Other studies have demonstrated angiographic thrombus resolution and outstanding clinical outcomes with the use of intravenous eptifibatide, heparin, and aspirin, and long-term DAPT on discharge.[34]

There is evidence to suggest that excessive TGF-β[15] and metalloproteinase [5] may have some role in the development and progression of CAAs. Angiotensin II type-1 receptor antagonists, such as Losartan, can inhibit TGF-β.[35] Similarly, statins have been shown to inhibit the secretion of metalloproteinase-1, -2, -3, and -9 from macrophages and vascular smooth muscle cells.[36] Therefore, these drugs may be helpful in the treatment and prevention of progression of coronary aneurysms, though there have been no long-term randomized data available.

Percutaneous coronary intervention

Percutaneous intervention is a fairly new option with a markedly smaller data set. The described techniques include conventional stent implantation, coil embolization, autologous saphenous vein-covered stent grafting, and one case has been reported when DES implantation superimposed on a polytetrafluoroethylene (PTFE)-covered stent graft.[37]

PTFE-covered stents have emerged as a new tool for the treatment of CAAs.[38] However, some multicenter randomized trials in comparing expanded PTFE-stent graft with bare metal stents have demonstrated that these stents do not improve clinical outcomes and may be linked to a higher incidence of restenosis and early thrombosis.[39]

Szalat et al.[38] reported one of the largest retrospective studies comparing outcomes of patients treated with surgery (n = 18) or with PTFE-covered stents (n = 24). It was demonstrated that patients treated with stents were older (60.5 vs. 47.7 years old) and had smaller aneurysms (9.8 vs. 35.1 mm). No deaths were reported in either group. Only 5 of 24 patients who received stents were found to have restenosis on follow-up angiography and these patients tended to have aneurysms >10 mm in diameter.

Other authors have described successful treatment of CAA using coil embolization. Saccà et al.[40] reported a case of successful coil embolization and occlusion of CAA in the terminal LMS in a patient with prior coronary artery bypass graft surgery, including left internal mammary artery to LAD artery. The authors successfully deployed four Guglielmi detachable coils (Boston Scientific) into the aneurysm resulting in complete resolution of the aneurysm and a patent native left main at final angiography.


Surgical management is appropriate in symptomatic patients who have obstructive coronary artery disease or evidence of embolization leading to myocardial ischemia and in patients with coronary aneurysm with a risk of rupture.[41] Various surgical strategies have been described including resection, aneurysm ligation, marsupialization with interposition graft, and coronary artery bypass surgery. The major bulk of experience regarding these strategies stem from atherosclerosis – induced CAAs.[41]

In symptomatic patients unsuitable for PCI, surgical excision or ligation of CAA combined with bypass grafting of the affected coronary arteries is the preferred option.[42]

Surgical approach is considered to be safer and more reliable for repair of a CAA/pseudoaneurysm. The indications for the surgical treatment of CAA in general are:

  • Severe coronary artery disease
  • CAAs near the bifurcation of large branches
  • Evidence of emboli from the aneurysm to the distal coronary bed resulting in myocardial ischemia
  • Progressive enlargement of a CAA documented by serial angiographic measurements; and
  • CAAs in the LMS
  • Complications such as fistula formation
  • Compression of cardiac chambers
  • Giant CAA (dilatation exceeding the reference vessel diameter by > four times).[43]

Based on the current literature, our proposed management strategies are highlighted in [Figure 5]. These are our own proposed strategies and are not endorsed by any of the American or European Cardiovascular Societies.
Figure 5: Management algorithm: Our proposed management algorithm for managing coronary artery aneurysm

Click here to view


The prognosis of CAA depends on the size of the aneurysm. In general, small aneurysms have a favorable prognosis with a low risk of myocardial ischemic events and/or mortality.[44],[45] On the contrary, giant CAAs (i.e., those with an internal diameter >8 mm) have a high risk of morbidity and mortality.[19] About one-half of such aneurysms become obstructed, and are associated with myocardial infarction, arrhythmias, or sudden death.

   Conclusions Top

CAA is an uncommon entity and is frequently found incidentally during coronary angiography. The majority of the coronary aneurysms are atherosclerotic in origin, but they can also be congenital or secondary to inflammatory or connective tissue disorders with a well-known association with Kawasaki disease. The precise pathogenesis leading to CAA formation remains unclear. Treatment may consist of surgical, percutaneous or medical interventions, but the optimal treatment for CAA still remains debatable. With the increase in coronary angiography and more widespread use of imaging modalities, like high resolution CT scans and MRI, the diagnosis of coronary aneurysms is likely to become more frequent, and we need to have evidence-based management strategies to deal with this uncommon but complex condition.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.


The authors appreciate the support of the Catheterization Laboratory Staff of University Hospital of Wales, Cardiff and Morriston Hospital, Swansea for providing the images for this article.[46],[47],[48]

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Swaye PS, Fisher LD, Litwin P, Vignola PA, Judkins MP, Kemp HG, et al. Aneurysmal coronary artery disease. Circulation 1983;67:134-8.  Back to cited text no. 1
Kato H, Sugimura T, Akagi T, Sato N, Hashino K, Maeno Y, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 1996;94:1379-85.  Back to cited text no. 2
Elahi MM, Dhannapuneni RV, Keal R. Giant left main coronary artery aneurysm with mitral regurgitation. Heart 2004;90:1430.  Back to cited text no. 3
Indolfi C, Achille F, Tagliamonte G, Spaccarotella C, Mongiardo A, Ferraro A, et al. Polytetrafluoroethylene stent deployment for a left anterior descending coronary aneurysm complicated by late acute anterior myocardial infarction. Circulation 2005;112:e70-1.  Back to cited text no. 4
Nichols L, Lagana S, Parwani A. Coronary artery aneurysm: A review and hypothesis regarding etiology. Arch Pathol Lab Med 2008;132:823-8.  Back to cited text no. 5
Bell MR, Garratt KN, Bresnahan JF, Edwards WD, Holmes DR Jr. Relation of deep arterial resection and coronary artery aneurysms after directional coronary atherectomy. J Am Coll Cardiol 1992;20:1474-81.  Back to cited text no. 6
Markis JE, Joffe CD, Cohn PF, Feen DJ, Herman MV, Gorlin R, et al. Clinical significance of coronary arterial ectasia. Am J Cardiol 1976;37:217-22.  Back to cited text no. 7
Díaz-Zamudio M, Bacilio-Pérez U, Herrera-Zarza MC, Meave-González A, Alexanderson-Rosas E, Zambrana-Balta GF, et al. Coronary artery aneurysms and ectasia: Role of coronary CT angiography. Radiographics 2009;29:1939-54.  Back to cited text no. 8
Holmes DR Jr, Vlietstra RE, Mock MB, Reeder GS, Smith HC, Bove AA, et al. Angiographic changes produced by percutaneous transcutaneous coronary angioplasty. Am J Cardiol 1983;51:676-83.  Back to cited text no. 9
Aoki J, Kirtane A, Leon MB, Dangas G. Coronary artery aneurysms after drug-eluting stent implantation. JACC Cardiovasc Interv 2008;1:14-21.  Back to cited text no. 10
Hirsch GM, Casey PJ, Raza-Ahmad A, Miller RM, Hirsch KJ. Thrombosed giant coronary artery aneurysm presenting as an intracardiac mass. Ann Thorac Surg 2000;69:611-3.  Back to cited text no. 11
Berkoff HA, Rowe GG. Atherosclerotic ulcerative disease and associated aneurysms of the coronary arteries. Am Heart J 1975;90:153-8.  Back to cited text no. 12
Newman KM, Ogata Y, Malon AM, Irizarry E, Gandhi RH, Nagase H, et al. Identification of matrix metalloproteinases 3 (stromelysin-1) and 9 (gelatinase B) in abdominal aortic aneurysm. Arterioscler Thromb 1994;14:1315-20.  Back to cited text no. 13
Lamblin N, Bauters C, Hermant X, Lablanche JM, Helbecque N, Amouyel P, et al. Polymorphisms in the promoter regions of MMP-2, MMP-3, MMP-9 and MMP-12 genes as determinants of aneurysmal coronary artery disease. J Am Coll Cardiol 2002;40:43-8.  Back to cited text no. 14
Gelb BD. Marfan's syndrome and related disorders – More tightly connected than we thought. N Engl J Med 2006;355:841-4.  Back to cited text no. 15
Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 2006;355:788-98.  Back to cited text no. 16
Berkalp B, Kervancioglu C, Oral D. Coronary artery aneurysm formation after balloon angioplasty and stent implantation. Int J Cardiol 1999;69:65-70.  Back to cited text no. 17
Aboeata AS, Sontineni SP, Alla VM, Esterbrooks DJ. Coronary artery ectasia: Current concepts and interventions. Front Biosci (Elite Ed) 2012;4:300-10.  Back to cited text no. 18
Mrdović I, Jozić T, Asanin M, Perunicić J, Ostojić M. Myocardial reinfarction in a patient with coronary ectasia. Cardiology 2004;102:32-4.  Back to cited text no. 19
Kühl M, Varma C. A case of acute coronary thrombosis in diffuse coronary artery ectasia. J Invasive Cardiol 2008;20:E23-5.  Back to cited text no. 20
Channon KM, Wadsworth S, Bashir Y. Giant coronary artery aneurysm presenting as a mediastinal mass. Am J Cardiol 1998;82:1307-8, A11.  Back to cited text no. 21
Augustin N, Wessely R, Pörner M, Schömig A, Lange R. Giant coronary aneurysm obstructing the right heart. Lancet 2006;368:386.  Back to cited text no. 22
Pahlavan PS, Niroomand F. Coronary artery aneurysm: A review. Clin Cardiol 2006;29:439-43.  Back to cited text no. 23
Murthy PA, Mohammed TL, Read K, Gilkeson RC, White CS. MDCT of coronary artery aneurysms. AJR Am J Roentgenol 2005;184:S19-20.  Back to cited text no. 24
Devabhaktuni S, Mercedes A, Diep J, Ahsan C. Coronary artery ectasia-A review of current literature. Curr Cardiol Rev 2016;12:318-23.  Back to cited text no. 25
Konen E, Feinberg MS, Morag B, Guetta V, Shinfeld A, Smolinsky A, et al. Giant right coronary aneurysm: CT angiographic and echocardiographic findings. AJR Am J Roentgenol 2001;177:689-91.  Back to cited text no. 26
Halapas A, Lausberg H, Gehrig T, Friedrich I, Hauptmann KE. Giant right coronary artery aneurysm in an adult male patient with non-ST myocardial infarction. Hellenic J Cardiol 2013;54:69-76.  Back to cited text no. 27
Sanidas EA, Vavuranakis M, Papaioannou TG, Kakadiaris IA, Carlier S, Syros G, et al. Study of atheromatous plaque using intravascular ultrasound. Hellenic J Cardiol 2008;49:415-21.  Back to cited text no. 28
Bajaj S, Parikh R, Hamdan A, Bikkina M. Covered-stent treatment of coronary aneurysm after drug-eluting stent placement: Case report and literature review. Tex Heart Inst J 2010;37:449-54.  Back to cited text no. 29
Bhindi R, Testa L, Ormerod OJ, Banning AP. Rapidly evolving giant coronary aneurysm. J Am Coll Cardiol 2009;53:372.  Back to cited text no. 30
Demopoulos VP, Olympios CD, Fakiolas CN, Pissimissis EG, Economides NM, Adamopoulou E, et al. The natural history of aneurysmal coronary artery disease. Heart 1997;78:136-41.  Back to cited text no. 31
Boyer N, Gupta R, Schevchuck A, Hindnavis V, Maliske S, Sheldon M, et al. Coronary artery aneurysms in acute coronary syndrome: Case series, review, and proposed management strategy. J Invasive Cardiol 2014;26:283-90.  Back to cited text no. 32
Lima B, Varma SK, Lowe JE. Nonsurgical management of left main coronary artery aneurysms: Report of 2 cases and review of the literature. Tex Heart Inst J 2006;33:376-9.  Back to cited text no. 33
Vik-Mo H, Wiseth R, Hegbom K. Coronary aneurysm after implantation of a paclitaxel-eluting stent. Scand Cardiovasc J 2004;38:349-52.  Back to cited text no. 34
Guo ZX, Qiu MC. Losartan downregulates the expression of transforming growth factor beta type I and type II receptors in kidney of diabetic rat. Zhonghua Nei Ke Za Zhi 2003;42:403-8.  Back to cited text no. 35
Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 2003;23:769-75.  Back to cited text no. 36
Ghanta RK, Paul S, Couper GS. Successful revascularization of multiple coronary artery aneurysms using a combination of surgical strategies. Ann Thorac Surg 2007;84:e10-1.  Back to cited text no. 37
Szalat A, Durst R, Cohen A, Lotan C. Use of polytetrafluoroethylene-covered stent for treatment of coronary artery aneurysm. Catheter Cardiovasc Interv 2005;66:203-8.  Back to cited text no. 38
Schächinger V, Hamm CW, Münzel T, Haude M, Baldus S, Grube E, et al. Arandomized trial of polytetrafluoroethylene- membrane-covered stents compared with conventional stents in aortocoronary saphenous vein grafts. J Am Coll Cardiol 2003;42:1360-9.  Back to cited text no. 39
Saccà S, Pacchioni A, Nikas D. Coil embolization for distal left main aneurysm: A new approach to coronary artery aneurysm treatment. Catheter Cardiovasc Interv 2012;79:1000-3.  Back to cited text no. 40
LaMotte LC, Mathur VS. Atherosclerotic coronary artery aneurysms: 8-year angiographic follow-up. Tex Heart Inst J 2000;27:72-3.  Back to cited text no. 41
Badmanaban B, Mallon P, Campbell N, Sarsam MA. Repair of left coronary artery aneurysm, recurrent ascending aortic aneurysm, and mitral valve prolapse 19 years after Bentall's procedure in a patient with Marfan syndrome. J Card Surg 2004;19:59-61.  Back to cited text no. 42
Bradbury AW, Milne AA, Murie JA. Surgical aspects of Behçet's disease. Br J Surg 1994;81:1712-21.  Back to cited text no. 43
Burns JC, Glodé MP. Kawasaki syndrome. Lancet 2004;364:533-44.  Back to cited text no. 44
Roberts WC. Natural history, clinical consequences, and morphologic features of coronary arterial aneurysms in adults. Am J Cardiol 2011;108:814-21.  Back to cited text no. 45
Zhang F, Qian JY, Ge JB. Rapid development of late stent malappositon and coronary aneurysm following implantation of a paclitaxel-eluting coronary stent. Chin Med J (Engl) 2007;120:614-6.  Back to cited text no. 46
Nilsen DW, Melberg T, Larsen AI, Barvik S, Bonarjee V. Late complications following the deployment of drug eluting stents. Int J Cardiol 2006;109:398-401.  Back to cited text no. 47
Singh H, Singh C, Aggarwal N, Dugal JS, Kumar A, Luthra M, et al. Mycotic aneurysm of left anterior descending artery after sirolimus-eluting stent implantation: A case report. Catheter Cardiovasc Interv 2005;65:282-5.  Back to cited text no. 48


  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]

  [Table 1], [Table 2], [Table 3]

This article has been cited by
1 Coils embolization use for coronary procedures: Basics, indications, and techniques
Shu Xian Loh, Emmanuelle Brilakis, Gabriele Gasparini, Pierfrancesco Agostoni, Roberto Garbo, Kambis Mashayekhi, Khaldoon Alaswad, Omer Goktiken, Alexandre Avran, Paul Knaapen, Alex Nap, Ahmed Elguindi, Khalid Tammam, Masahisa Yamane, Gregg W. Stone, Mohaned Egred
Catheterization and Cardiovascular Interventions. 2023;
[Pubmed] | [DOI]
2 Surgical management of drug-eluting stent associated coronary artery aneurysms: a case series
Lokeswara Rao Sajja, Gopichand Mannam, Devanish Narasimhasanth Kamtam
Indian Journal of Thoracic and Cardiovascular Surgery. 2023;
[Pubmed] | [DOI]
3 Coronary Artery Ectasia as an Autoimmune Disease Paradigm in a Cross-Sectional Case-Control Study
George Chalikias, Christina Tsigalou, Dimitrios Stakos, Emmanouil Kakoudakis, Adina Thomaidis, George Kipouros, Maria Panopoulou, Anna-Maria Xanthopoulou, Asimina Lantzouraki, Stavros Konstantinides, Dimitrios Tziakas
The American Journal of Cardiology. 2023; 205: 63
[Pubmed] | [DOI]
4 Massive Giant Coronary Artery Aneurysm
Maria Beyer, Seth Shoap, Erik Beyer
Annals of Thoracic Surgery Short Reports. 2023;
[Pubmed] | [DOI]
5 Coronary artery dilation in children with febrile illnesses other than Kawasaki disease: A case report and literature review
Yafei Guo, Lixia Yang, Shuran Shao, Nanjun Zhang, Yimin Hua, Kaiyu Zhou, Fan Ma, Xiaoliang Liu
Heliyon. 2023; 9(11): e21385
[Pubmed] | [DOI]
6 Progression of IgG4-related coronary aneurysm without corticosteroid treatment after surgical resection: A case report
Ayaka Ikawa, Taiji Okada, Daisuke Yamashita, Yutaka Furukawa
Journal of Cardiology Cases. 2023;
[Pubmed] | [DOI]
7 Giant Coronary Aneurysm with Coronary-Pulmonary Artery Fistula in a Jehovah's Witness
Aina Hirofuji, Azusa Furugen, Takeshi Kamada, Kenji Yamazaki, Hiroyuki Kamiya, Hirosato Doi
The Thoracic and Cardiovascular Surgeon Reports. 2023; 12(01): e1
[Pubmed] | [DOI]
8 Treatment of coronary pseudoaneurysm detected after percutaneous coronary intervention for chronic total occlusion: A case report
Xudong Li, Yijie Huang, Lei Cui, Bing Han
Medicine. 2023; 102(9): e32839
[Pubmed] | [DOI]
9 Case analysis of a RIII-C single coronary artery with type IV dual LAD and right-dominant triple PDA
Wyatt E. Lanik, Travis L. McCumber, Samer Sayyed, Chad Hovseth, Ethan L. Snow
Translational Research in Anatomy. 2023; : 100235
[Pubmed] | [DOI]
10 Sudden cardiac death caused by a right coronary artery aneurysm complicated with acute myocardial infarction: a case report
Peng Wu, Haibo Zhang, Ping Ren, Shixi Luo, Xin Zhao
Journal of International Medical Research. 2023; 51(5): 0300060523
[Pubmed] | [DOI]
11 Coronary Artery Aneurysms as a Cause of Acute Coronary Syndrome Presentation - A Focused Review
Azka Latif, Amy Tran, Junaid Ahsan, Noman Lateef, Waiel Abusina, Vikas Kapoor, Zoraiz Ahsan, Soban Ahmad, Mohsin Mirza
Current Cardiology Reviews. 2023; 19(5)
[Pubmed] | [DOI]
12 Giant left main coronary artery aneurysm
Kristina Andjelkovic, Danijela Draskovic, Mladen Kocica, Jovana Radovanovic, Branislava Ivanovic
Vojnosanitetski pregled. 2023; 80(8): 712
[Pubmed] | [DOI]
13 Prevalence of antecedent Kawasaki disease in young adults with suspected acute coronary syndrome in high incidence cohort
Tsung-Cheng Shyu, Chiung-Jen Wu, Yun-Ching Fu, Yi-Chin Peng, Tzu-Yao Chuang, Ho-Chang Kuo, Kai-Sheng Hsieh, I-Hsin Tai
Frontiers in Cardiovascular Medicine. 2023; 10
[Pubmed] | [DOI]
14 Case report: Giant coronary artery aneurysms with severe stenosis and multiple abdominal artery aneurysms
Hongli Gao, Hongwei Li
Frontiers in Medicine. 2023; 10
[Pubmed] | [DOI]
15 Evaluation of Frontal QRS-T Angle in Patients with Coronary Artery Ectasia
Mehmet Zulkuf Karahan, Adem Aktan, Tuncay Güzel, Fethullah Kayan, Serhat Günlü
International Journal of Cardiovascular Sciences. 2023; 36
[Pubmed] | [DOI]
16 Giant Coronary Artery Aneurysm After Breast Radiation in a Patient With Congenital Coronary Arteriovenous Fistula
Andrew Engel-Rodriguez, Natalie Engel-Rodriguez, Robert Engel-Rodriguez, Robert Engel-Ramos
Annals of Internal Medicine: Clinical Cases. 2022; 1(7)
[Pubmed] | [DOI]
17 Beaded Coronary Aneurysm in Kawasaki Disease
I-Hsin Tai, Kai-Sheng Hsieh, Ho-Chang Kuo
Children. 2022; 9(10): 1463
[Pubmed] | [DOI]
18 Left Main Coronary Artery Fusiform Aneurysm
Miguel A Rodriguez Guerra, Ana P Urena Neme, Michael Victoria, Gabriella Roa Gomez, Giancarlo Acosta
Cureus. 2022;
[Pubmed] | [DOI]
19 Recurrent ST-Elevation Myocardial Infarction (STEMI) in Coronary Artery Aneurysm Secondary to Atherosclerosis
Md Bhuiyan, Faraz Badar, Aqsa Ashraf, Emanuel D Chryssos, Asma Iftikhar
Cureus. 2022;
[Pubmed] | [DOI]
20 Five-years’ prognostic analysis for coronary artery ectasia patients with coronary atherosclerosis: A retrospective cohort study
Ruifeng Liu, Xiangyu Gao, Siwen Liang, Huiqiang Zhao
Frontiers in Cardiovascular Medicine. 2022; 9
[Pubmed] | [DOI]
21 Giant right coronary artery aneurysm with vena cava superior fistula: a case report and radiological findings
Vincent van Grinsven, Arizona Binst, Hans Rombouts, Rolf Symons, Herbert De Praetere
The Cardiothoracic Surgeon. 2022; 30(1)
[Pubmed] | [DOI]
22 Case series of coronary artery aneurysms after Everolimus eluting stent implantation and comparison with Sirolimus eluting stents
Raghav Sharma, Aditya Vikram Ruia, Tek Singh Mahant
BMC Cardiovascular Disorders. 2022; 22(1)
[Pubmed] | [DOI]
23 Surgery for posterior wall rupture of a left main trunk coronary artery aneurysm
Hiroko Taguchi, Kikuko Obase, Junichiro Eishi, Shun Nakaji, Takashi Miura, Kiyoyuki Eishi
JTCVS Techniques. 2022;
[Pubmed] | [DOI]
24 Sorting nexins as a promising therapeutic target for cardiovascular disorders: An updated overview
Fatemeh Yarmohammadi, A. Wallace Hayes, Gholamreza Karimi
Experimental Cell Research. 2022; 419(1): 113304
[Pubmed] | [DOI]
25 A giant coronary artery aneurysm in a patient with Behçet’s syndrome
Mustafa Erdogan, Duygu Sevinc Ozgur, Gamze Akkuzu, Cemal Bes
Rheumatology. 2022;
[Pubmed] | [DOI]
26 Resolution of coronary arteritis following tuberculosis treatment
Nestor Barreto-Neto, Alexandre W. Segre, Lissiane K.N. Guedes, Luciana P.C. Seguro, Rosa M.R. Pereira
Journal of Clinical Tuberculosis and Other Mycobacterial Diseases. 2022; 26: 100295
[Pubmed] | [DOI]
27 No Ordinary Coronary: A Case Series of Two Large Coronary Artery Aneuryms Found on Chest X-Ray
Aleksandra Degtyar, Thomas Cole Baker, Mohan Punja
The Journal of Emergency Medicine. 2022;
[Pubmed] | [DOI]
28 Imagerie des anévrismes coronaires de l'adulte
Xavier Halna du Fretay, Pierre Aubry
Annales de Cardiologie et d'Angéiologie. 2022;
[Pubmed] | [DOI]
29 Left anterior descending artery aneurysm in a young patient with familial retinal arterial macroaneurysm: A case report
Husaam Haidar, Ahmed F. Alohali, Abdulaziz S. Albaradai, Mohammed Alreshidan, Mohmmed A. Algamdi
American Journal of Ophthalmology Case Reports. 2022; : 101548
[Pubmed] | [DOI]
30 Multiple symptomatic giant coronary aneurysms
Damir Vukomanovic, Samuel Unzek, William Reichert, Farouk Mookadam
Clinical Case Reports. 2022; 10(4)
[Pubmed] | [DOI]
31 Prospective, single-centre evaluation of the safety and efficacy of percutaneous coronary interventions following a decision tree proposing a no-stent strategy in stable patients with coronary artery disease (SCRAP study)
Ludovic Meunier, Matthieu Godin, Géraud Souteyrand, Benoît Mottin, Yann Valy, Vincent Lordet, Christian Benoit, Ronan Bakdi, Virginie Laurençon, Philippe Genereux, Matthias Waliszewski, Caroline Allix-Béguec
Clinical Research in Cardiology. 2022;
[Pubmed] | [DOI]
32 Coronary artery aneurysm presenting as acute coronary syndrome: two case reports and a review of the literature
Tuncay Taskesen,Kofi Osei,Justin Ugwu,Russell Hamilton,Mark Tannenbaum,Magdi Ghali
Journal of Thrombosis and Thrombolysis. 2021;
[Pubmed] | [DOI]
33 A rare case of a giant circumflex coronary artery aneurysm 10 years after bentall surgery
Marcello Chiocchi,Carlo Di Donna,Alfredo Intorcia,Luca Pugliese,Vincenzo De Stasio,Federica Di Tosto,Luigi Spiritigliozzi,Francesca DæErrico,Leonardo Benelli,Monia Pasqualetto,Cecilia Cerimele,Matteo Cesareni,Francesco Grimaldi,Francesco Paolo Sbordone,Alessandra Luciano,Mario Laudazi,Carlotta Rellini,Alessia Romeo,Gianluca Vanni,Daniele Morosetti,Marco Di Luozzo,Roberto Floris,Francesco Romeo,Francesco Giuseppe Garaci
Radiology Case Reports. 2021; 16(7): 1749
[Pubmed] | [DOI]
34 Challenges and strategies in the management of coronary artery aneurysms
Xiaogang Zhu, Quanzhong Zhou, Shan Tong, Yujie Zhou
Hellenic Journal of Cardiology. 2021; 62(2): 112
[Pubmed] | [DOI]
35 Surgical management of a left anterior descending Coronary Artery Aneurysm after drug eluting stent implantation
Yavuzer Koza,Oguzhan Birdal,Hakan Tas,Noorullah Hamdard,Ferhat Borulu,Bilgehan Erkut
IJC Heart & Vasculature. 2021; 34: 100793
[Pubmed] | [DOI]
36 Giant unruptured circumflex coronary artery aneurysms presenting as acute coronary syndrome
Vincenzo Sucato,Girolamo Manno,Salvatore Evola,Giuseppe Coppola,Egle Corrado,Giuseppe Vadalà,Giuseppina Novo,Alfredo Ruggero Galassi
Coronary Artery Disease. 2021; 32(2): 170
[Pubmed] | [DOI]
37 Autoimmune reactivity is present in patients with incident coronary artery ectasia
Anna-Maria Xanthopoulou, Christina Tsigalou, George Chalikias, Adina Thomaidis, Dimitrios Stakos, Emmanouil Kakoudakis, Maria Panopoulou, Stavros Konstantinides, Dimitrios Tziakas
Coronary Artery Disease. 2021; 32(8): 733
[Pubmed] | [DOI]
38 Surgical repair of a giant coronary artery aneurysm
Giovanni Jr Soletti,Christopher Lau,Gianmarco Cancelli,N. Bryce Robinson,Katia Audisio,Leonard N. Girardi,Mario Gaudino
Journal of Cardiac Surgery. 2021;
[Pubmed] | [DOI]
39 Coronary artery aneurysms: outcomes following medical, percutaneous interventional and surgical management
Shameer Khubber,Rajdeep Chana,Chandramohan Meenakshisundaram,Kamal Dhaliwal,Mohomed Gad,Manpreet Kaur,Kinjal Banerjee,Beni Rai Verma,Shashank Shekhar,Muhummad Zia Khan,Muhammad Shahzeb Khan,Safi Khan,Yasser Sammour,Rayji Tsutsui,Rishi Puri,Ankur Kalra,Faisal G Bakaeen,Conrad Simpfendorfer,Stephen Ellis,Douglas Johnston,Gosta Pettersson,Samir Kapadia
Open Heart. 2021; 8(1): e001440
[Pubmed] | [DOI]
40 Coronary Artery Anomalies
Francesco Gentile, Vincenzo Castiglione, Raffaele De Caterina
Circulation. 2021; 144(12): 983
[Pubmed] | [DOI]
41 Surgical treatment of coronary atherosclerotic heart disease with right coronary artery aneurysm: a case report
Feng Wang,Guiqing Liu,Xin Mao
Perfusion. 2021; 36(2): 207
[Pubmed] | [DOI]
42 Acute coronary syndrome in a young woman with a giant coronary aneurysm and mitral valve prolapse: a case report and literature review
Xiaoyan Jiang, Jiamin Li, Xuehua Zhang, Han Chen
Journal of International Medical Research. 2021; 49(3): 0300060521
[Pubmed] | [DOI]
43 Coronary artery aneurysm combined with myocardial bridge: A case report
Zhen Ye,Xian-Feng Dong,Yuan-Ming Yan,Yu-Kun Luo
World Journal of Clinical Cases. 2021; 9(16): 3996
[Pubmed] | [DOI]
44 Is Coronary Artery Ectasia a Progressive Disease? A Self-Controlled Retrospective Cohort Study
Ruifeng Liu, Huiqiang Zhao, Xiangyu Gao, Siwen Liang
Frontiers in Cardiovascular Medicine. 2021; 8
[Pubmed] | [DOI]
45 The Important Role of Endothelium and Extracellular Vesicles in the Cellular Mechanism of Aortic Aneurysm Formation
Klaudia Mikolajczyk, Dominika Spyt, Wioletta Zielinska, Agnieszka Zuryn, Inaz Faisal, Murtaz Qamar, Piotr Swiniarski, Alina Grzanka, Maciej Gagat
International Journal of Molecular Sciences. 2021; 22(23): 13157
[Pubmed] | [DOI]
46 Giant Coronary Artery Aneurysms
Megan C Smith,Alex Schneller,Aniruddha Singh,Rahil Rafeedheen
Cureus. 2021;
[Pubmed] | [DOI]
47 Coronary artery aneurysm: A review
Anthony Georges Matta, Nabil Yaacoub, Vanessa Nader, Nicolas Moussallem, Didier Carrie, Jerome Roncalli
World Journal of Cardiology. 2021; 13(9): 446
[Pubmed] | [DOI]
48 Coronary artery aneurism – is a stent enough?
Sandra Makarovic,Marin Vuckovic,Zorin Makarovic,Damir Kirner
Cardiologia Croatica. 2020; 15(3-4): 45
[Pubmed] | [DOI]
49 Rare case of a giant thrombosed left anterior descending coronary artery aneurysm
Yong Peng,Yaxiong Li,Yu Jiang
Journal of Cardiothoracic Surgery. 2020; 15(1)
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
   Case 1
   Case 2
   Case 3
   Case 4
    Article Figures
    Article Tables

 Article Access Statistics
    PDF Downloaded448    
    Comments [Add]    
    Cited by others 49    

Recommend this journal